Generalized Cauchy difference equations. II
نویسندگان
چکیده
منابع مشابه
Generalized Cauchy Difference Equations. Ii
The main result is an improvement of previous results on the equation f(x) + f(y)− f(x+ y) = g[φ(x) + φ(y)− φ(x+ y)] for a given function φ. We find its general solution assuming only continuous differentiability and local nonlinearity of φ. We also provide new results about the more general equation f(x) + f(y)− f(x+ y) = g(H(x, y)) for a given function H. Previous uniqueness results required ...
متن کاملOn the Cauchy-problem for Generalized Kadomtsev-petviashvili-ii Equations
The Cauchy-problem for the generalized Kadomtsev-PetviashviliII equation ut + uxxx + ∂ −1 x uyy = (u )x, l ≥ 3, is shown to be locally well-posed in almost critical anisotropic Sobolev spaces. The proof combines local smoothing and maximal function estimates as well as bilinear refinements of Strichartz type inequalities via multilinear interpolation in Xs,b-spaces. Inspired by the work of Keni...
متن کاملStability of Generalized Additive Cauchy Equations
A familiar functional equation f(ax+b) = cf(x) will be solved in the class of functions f : R → R. Applying this result we will investigate the Hyers-Ulam-Rassias stability problem of the generalized additive Cauchy equation f ( a1x1+···+amxm+x0 )= m ∑ i=1 bif ( ai1x1+···+aimxm ) in connection with the question of Rassias and Tabor.
متن کاملA Pair of Difference Differential Equations of Euler-cauchy Type
We study two classes of linear difference differential equations analogous to Euler-Cauchy ordinary differential equations, but in which multiple arguments are shifted forward or backward by fixed amounts. Special cases of these equations have arisen in diverse branches of number theory and combinatorics. They are also of use in linear control theory. Here, we study these equations in a general...
متن کاملOn Generalized Cauchy and Pexider Functional Equations over a Field
Let lK be a commutative field and (P, +) be a uniquely 2-divisible group (not necessarily abelian). We characterize all functions T: IK -+ P such that the Cauchy difference T(s+ t) T(t) T(s) depends only on the product st for all s, t E ~{. Further, we apply this result to describe solutions of the functional equation F(s + t) = K(st) 0 H(s) 0 G(t), where the unknown functions F, K, H, G map th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2008
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-08-09379-9